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ABSTRACT
This paper proposes an approach to learn robust behavior repre-
sentations in online platforms by addressing the challenges of user
behavior skew and sparse participation. Latent behavior models
are important in a wide variety of applications: recommender sys-
tems; prediction; user profiling; community characterization. Our
framework is the first to jointly address skew and sparsity across
graphical behavior models. We propose a generalizable bayesian
approach to partition users in the presence of skew while simul-
taneously learning latent behavior profiles over these partitions
to address user-level sparsity. Our behavior profiles incorporate
the temporal activity and links between participants, although the
proposed framework is flexible to introduce other definitions of
participant behavior. Our approach explicitly discounts frequent
behaviors and learns variable size partitions capturing diverse be-
havior trends. The partitioning approach is data-driven with no
rigid assumptions, adapting to varying degrees of skew and sparsity.

A qualitative analysis indicates our ability to discover niche and
informative user groups on large online platforms. Results on User
Characterization (+6-22% AUC); Content Recommendation (+6-43%
AUC) and Future Activity Prediction (+12-25% RMSE) indicate sig-
nificant gains over state-of-the-art baselines. Furthermore, user
cluster quality is validated with magnified gains in the characteri-
zation of users with sparse activity.
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1 INTRODUCTION
This paper addresses the challenge of learning robust statistical
representations of participant behavior on online social networks.
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Figure 1: Dominant Action Types and Content are highly
skewed in Ask-Ubuntu, User presence exhibits steep power-
law (η ≈ 3) indicating several inconsistent or inactive users

Graphical behavior models have found success in several social
media applications: content recommendation [16, 25], behavior pre-
diction [17, 28], user characterization [11] and community profil-
ing [5]. Despite the large sizes of these social networks (e.g. several
million users), developing robust behavior profiles is challenging.
We know from prior work [3] that activity on online networks is
heavy tailed (a small set of users account for most interactions)
with several temporally sparse users. Furthermore, user activity
styles and topical interests are highly skewed (imbalanced) within
the population, complicating the inference of prototypical behav-
ior types. Figure 1 shows a typical example of behavior skew and
temporal sparsity in AskUbuntu1, a popular online Q&A forum.

Past works address one of the challenges (either sparsity or skew)
separately in graphical behavior models, but do not adopt a unified
approach to learn representations. Clustering is one common way
to address sparsity [18, 24]. However, using clustering techniques
in the presence of behavior skew can lead to uninformative results.
For example, when topic models do not account for skew (e.g. Zipf’s
law), the resulting topics are less descriptive [19]. The use of suitable
priors over the cluster sizes is a way to deal with skew. Beutel
et al. [4] propose the use of the Pitman-Yor process [14] (visualized
via Chinese Restaurant Process; CRP) to model skew in user data.
However, a direct application of the CRP prior to behavior models
cannot address sparsity. This is because behavior profiles are still
learnt at the user-level and inactive users degrade the ability to
learn robust latent representations; a lack of robust representations
affects cluster quality.

Our main technical insight: We need to simultaneously ad-
dress behavior skew and temporal sparsity of inactive users. While

1https://askubuntu.com/
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we exploit the Pitman-Yor process (or CRP) as a prior, our key in-
novation in addressing sparsity and behavior skew lies in how we
“seat” users onto tables. Our intuition is to associate inactive users
with those active users to whom they were most similar, at the time
these sparse users were active. Thus, to address sparsity we identify
three concrete lines of attack: Profiles need to be learned from data
at the granularity of a table (or equivalently, a group of users), not
at the user-level; Behavioral similarity should guide user seating
on these tables; We should discount common behavioral profiles to
encourage identification of niche behaviors in the presence of skew.
We refer to our model as CMAP (CRP-based Multi-Facet Activity
Profiling) in the rest of this paper. To summarize our contributions:

Jointly address skew and sparsity: To the best of our knowl-
edge, this is the first work to jointly address behavior skew
and sparsity with graphical behavior models. Our partition-
ing scheme can adapt to varying levels of behavior skew,
effectively uncover fine-grained or niche behavior profiles,
and address user-level sparsity.

Generalizability: While in this work, we employ user activity
and knowledge-exchanges, our framework generalizes well.
The constituents of a behavioral profile can be easily adapted
to new applications and platforms, while retaining skew and
sparsity awarenesss in the learning process.

Efficiency: Our model is efficient: the computational complex-
ity is linear in the number of users and interactions. We
employ caching optimizations to speed-up inference and
scale to massive datasets with parallelized batch sampling.

We show strong quantitative and qualitative results on diverse
datasets (public Stack-Exchange datasets and Coursera MOOCs2).
We chose our datasets across technical/non-technical subject do-
mains and varying population sizes, with all datasets seen to ex-
hibit significant behavioral skew and sparsity (table 5). We evaluate
CMAP against state-of-the-art baselines on three familiar task types:
user characterization (reputation; certificate prediction on MOOCs),
content recommendation and future activity prediction. Through
extensive qualitative analysis, we find CMAP gains to be most sig-
nificant for sparse users, and that the behavioral profiles learned
are coherent and varied in size, capturing underlying behavioral
skew. Our results have impact on the practical realities of large
scale social network dataset analyses, since successfully addressing
behavioral skew and sparsity is critical to familiar applications such
as behavioral profiling and content recommendation.

We organize the rest of the paper as follows. In Section 2 we
discuss related work. We formally define the problem and proposed
approach in Section 3 and 4. We then discuss model inference,
datasets and results in Sections 5, 6 and 7, concluding in Section 8.

2 RELATEDWORK
At a high level, our motivations are shared with skew-aware topic
models to improve document representation [19] by accounting
for Zipf’s law and short-text clustering methods [18, 27] to address
content sparsity in text snippets. Graphical behavior models em-
ploy simple Dirichlet priors in user profile assignments [11, 16, 17].
However, this setting is limited in it’s ability to model behavior

2https://stackexchange.com, https://coursera.org

Table 1: Comparing aspects addressed by baseline models
with our proposed approach (CMAP)

Aspect BLDA LadFG FEMA CMAP

Skew-aware No No No Yes, via CRP

User-level
Sparsity

No No External
Regularizer

Profile-based
Clustering

Multi-facet Limited to
Text/Action

Yes Yes Yes

Integratewith
latent models

Limited to
Text/Action

No No Yes

Runtime Linear Linear Quadratic Linear

skew and cannot cleanly separate niche and common behavior
profiles. Our qualitative results (section 7.4) reflect this observation.

In collaborative filtering, efforts have been made to transfer
the user-item latent structure across platforms [7, 13] via consen-
sus models to tackle sparsity. In the implicit feedback setting, this
approach assumes alignment of user behavior across platforms.
However, user interests and consumption trends vary not just by
platform, but action-type and time as well [8, 29]. User anonymiza-
tion (such as in MOOCs) can also pose difficulties in acquiring
cross-platform data. We choose not to rely on external data.

Beutel et al. [4] propose a bayesian approach to group users with
limited rating information and capture skewed product ratings.
While the direct application of Pitman-Yor priors [14] to group
users can capture skew in cluster sizes, it does not address the
inactive user problem. In contrast, we factor in the latent behavior
profiles in the seating to address sparsity via joint profiling of users
[24]. The skew-aware partitioning and profile learning tasks are
deeply coupled, unlike the superficial connection in past work.

Recently, Jiang et al [8] proposed sparsity-aware tensor factor-
ization for user behavior analysis. User representations are regular-
ized with external data such as author-author citations in academic
networks, however not accounting for behavior skew. Behavior
Factorization [29] simultaneously factorizes action-specific con-
tent affinities of users. Quadratic scaling imposes computational
limits on these methods. Deep recurrent networks have also been
explored to model temporal student behavior on MOOCs [15].

We choose FEMA [8] (Sparsity-aware Tensor Factorization),
BLDA [16] (LDA-based generative user model) and LadFG [15]
(Deep Recurrent network for temporal activity and attributes) as
representative baselines for comparison with our approach. Table 2
provides a summary of the aspects addressed by each model.

3 PROBLEM DEFINITION
We apply our approach to learn representations of user behavior
in multiple Coursera MOOCs and Stack-Exchange Q&A websites.
The available facets of user activity include textual content, actions,
time and inter-participant knowledge-exchanges.

Let U denote user set in a Stack-Exchange or MOOC dataset.
Users employ a set of discrete actions A to interact with content
generated from vocabularyV . A user interaction d (atomic unit of
participant activity) Is a tupled = (a,W , t ), where the user performs
action a ∈ A on contentW = {w1,w2 . . . | wi ∈ V} at time-stamp
t ∈ [0, 1] (normalized over the time-span of the activity logs). We
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denote the set of all interactions ofu ∈ U asDu . Thus the collection
of interactions in the dataset is D =

⋃
u ∈U Du . The action set for

each dataset is described in table 4. Lecture interaction content for
MOOC datasets is extracted from the respective transcripts.

Inter-participant knowledge-exchanges are represented by a di-
rected multigraphG = (U ,E). A directed labeled edge (u,v, ℓ) ∈ E
represents an interaction of user u, du ∈ Du (e.g. “answer”) that is
in response to an interaction of user v , dv ∈ Dv (e.g. “ask ques-
tion”) with label ℓ ∈ L indicating the nature of the exchange (e.g.
“answer”→“question”). We denote the set of all exchanges in which
participant u is involved by Lu , so that E =

⋃
u ∈U Lu .

Our goal is to obtain a set of temporal activity profiles R de-
scribing facets of user behavior, and infer user representations
Pu ,u ∈ U as a mixture over the inferred behavior profiles r ∈ R.

4 OUR APPROACH
We begin in section 4.1 with intuitions to jointly address the be-
havior skew and sparsity challenges. In section 4.2, we describe a
skew-aware user seating model guided by behavior profiles, con-
cluding in section 4.3 with a description of our profile model.

4.1 Attacking the Skew-Sparsity Challenge
We begin by formally discussing the Pitman-Yor process [14] and
then highlight challenges in the presence of sparsity.

Beutel et al. [4] employed the Pitman-Yor process via Chinese
restaurant seating [1], as a simple prior over clusters to identify
skewed user data trends. The conventional Chinese Restaurant
arrangement induces a non-parametric prior over integer partitions
(or indistinguishable entities), with concentration γ , discount δ , and
base distributionG0, to seat users across tables (partitions). Each
user is either seated on an existing table x ∈ {1, . . . , χ }, or assigned
a new table χ + 1 as follows:

p (x | u) ∝



nx−δ
N+γ , x ∈ {1, . . . , χ }, existing table,
γ+χδ
N+γ , x = χ + 1, new table,

(1)

where nx is the user-count on existing tables x ∈ {1, . . . , χ }, χ + 1
denotes a new table and N =

∑
x ∈{1, ..., χ } nx is the total user-

count. A direct application of Equation (1) as a simple prior can
address skew in profile proportions, but not sparsity. This is because,
sparse users introduce noise into estimation of the corresponding
behavioral profiles. To address sparsity, we need to find a way to
“fill in the gaps” in our knowledge about inactive users.

Thus, to address sparsity we identify three concrete lines of at-
tack: Profiles need to be learned from data at the granularity of
a table (or equivalently, a group of users), not at the level of an
individual; Behavioral similarity should guide seating on these ta-
bles; We should discount common behavioral profiles to encourage
identification of niche behaviors and improve profile resolution.

4.2 Our Profile-Driven Seating
Now, we introduce our profile-driven seating approach that builds
upon CRP to simultaneously generate partitions of similar users
and learn behavior profiles describing users in these partitions.
Consider a set of latent profiles r ∈ R describing observed facets of
user data with conditional likelihood p (u | r ) for u ∈ U . We “serve”
a profile rx ∈ R to users seated on each table x ∈ {1, . . . , χ }. A user
u is seated on an existing table x ∈ {1, . . . , χ } serving profile rx or

Table 2: Notation for seating arrangement

Symbol Description

N , R Number of seated users, Set of profiles
{1, . . . , χ }, χ + 1 Set of existing tables, New table
nx , rx User count on table x , profile served on x
χr , Nr Number of tables serving profile r , Total users

seated on tables serving profile r

a new table χ + 1 as follows,

p (x | u) ∝



nx−δ
N+γ × p (u | rx ), x ∈ {1, . . . , χ },
γ+χδ
N+γ ×

1
|R |

∑
r ∈R p (u | r ), x = χ + 1.

(2)

Note that the likelihood p (x | u) of choosing an existing table
x ∈ {1, . . . , χ } for useru depends on the conditional p (u | rx ) of the
profile rx served on the table and the number of users seated on table
x . Further, the seating likelihoods for existing tables depend on the
latent profiles served, while the latent profiles rx are learned from
the table x they are served on. This process introduces a mutual
coupling between seating and profile learning. A larger setting of
discount δ encourages the formation of new tables, leading to a
preference on exploration over exploitation in profile learning.

The likelihood of assigning the user to a new table x = χ + 1
depends on the sum of conditionals p (u | r ) with a uniform prior
1
|R | , and the number of existing tables χ . Notice the effect of the
discount factor δ : increasing δ favors exploration by forming new
tables. Niche users are likely to be seated separately with a different
profile served to them.

The main difference with basic CRP Equation (1), which par-
titions users based on the table size distribution, is that in our
approach, we seat users based on the table size distribution, the pro-
files served on those tables, and the conditional probability of the
user given behavioral profile. Equation (2) reduces to Equation (1)
when all profiles r ∈ R are equally likely for every user. We can
show that our seating process is exchangeable, similar to [1]. The
likelihood of a seating arrangement does not depend on the order
in which we seat users on the tables.

When user u is seated on a new table χ + 1, we draw profile
variable rχ+1 ∈ R on the new table as follows:

p (rχ+1 | u) ∼ p (u | r )p (r ),

where p (r ) is the Pitman-Yor base distributionG0, or prior over the
set of profiles. We set G0 to be uniform to avoid bias.

The likelihood p (r | u) of assigning profile r when seating user
u, is proportional to the sum of likelihoods of seating the user on
an existing table x ∈ {1, . . . , χ } serving profile r (i.e. rx = r ), or
seating on a new table χ + 1 with the profile rχ+1 = r . That is:

p (r | u) ∝
*....
,

∑
x ∈{1, ..., χ },

rx=r

nx − δ

N + γ
p (u | r )

+////
-

+
1
|R |
·
γ + χδ

N + γ
p (u | r ),

(3)

∝

(
Nr − χrδ

N + γ
+

γ + χδ

|R |(N + γ )

)
p (u | r ), (4)

where χr is the number of existing partitions serving profile r and
Nr is the total number of users seated on tables serving profile r .
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Three insights stem from Equation (4). First, the skew in profile
sizes depends on the counts of users exhibiting similar behavior
patterns (∝ p (u | r )) enabling adaptive fits unlike [4]. Second,
we discount common profiles served on multiple tables by the
product χrδ . Since χr is larger for common profiles drawn on many
tables, we discount common profiles more than niche profiles. This
“common profile discounting” enables us to learn behavioral profile
variations. Finally, not constraining the number of tables introduces
stochasticity in profile learning and encourages exploration.

We assign users with limited activity to tables that well explain
their data, biased by the priors in Equation (4). Our partitioning
scheme assigns the same profile to users sharing a table, reducing
the effect of inactive users since profiles describe behavioral groups.

In the next subsection, we introduce our temporal activity pro-
files r ∈ R for representing user activity in our datasets.

4.3 Latent Profile Description
In this section, we formally define our behavioral profiles to de-
scribe user activity. We reiterate that our framework is flexible to
other profile definitions depending on the requirements. In our
datasets, behavioral profiles (r ∈ R) encode what actions users take
(e.g. comment on a question), associated content (e.g. topic of the
question), and when they take them. Furthermore, users participate
in conversations (e.g. answer in response to a question), we term
these directed links as “knowledge exchange.”

Our profiles thus have two constituents: Joint associations of
actions and words; referred to as “action-topics”, and temporal dis-
tributions indicating when the action-topics are executed. Each
action-topic k ∈ K models user actions and the associated words,
with ϕVk (multinomial over words with vocabulary V) and ϕAk
(multinomial over actions A). Motivated by Wang and McCallum
[23], we employ a continuous time model, Beta(αr,k , βr,k ) distri-
butions, over a normalized time span to capture the temporal trend
of each action-topic k within each profile r .

Thus for any interaction d = (a,W , t ), the probability p (d | r ,k )
of a user interaction d given a profile r and topic k is:

p (d | r ,k ) ∝ ϕAk (a)
∏
w ∈W

ϕVk (w )︸                   ︷︷                   ︸
‘what’: profile independent

×
tαr ,k−1 (1 − t )βr ,k−1

B(αr,k , βr,k )︸                    ︷︷                    ︸
‘when’: profile dependent

, (5)

where B refers to the beta function. Notice that while the action-
topics are shared between profiles, each profile r has a different
temporal distribution associated with each action topic. Or sim-
ply, there are K action topics, but R × K temporal distributions.
This modeling choice allows users with different overall behavioral
profiles to participate in the same action topic at different times.

Since each behavioral profile r is a mixture over the K action
topics and the associated temporal distributions, the likelihood
p (d | r ) of user interaction d (as defined in section 3) for profile r is:

p (d | r ) ∝
∑
k

p (d | r ,k ) × ϕKr (k ), (6)

where ϕKr (k ) is a K dimensional multinomial mixture over action-
topics for each profile.

The next modeling step is to capture the exchange of knowledge
between users. Instead of modeling it at the level of every pair of

Algorithm 1 Summary of the generative process to draw user data
Du , Lu from profile r ∈ R served on user’s assigned table

1: for each action-topic k ∈ K do
2: Draw word distribution ϕVk ∼ Dir (αV )

3: Draw action distribution ϕAk ∼ Dir (αA )

4: for each activity profile r ∈ R do
5: Draw likelihood over action-topics, ϕKr ∼ Dir (αK )
6: for each profile r ′ ∈ R do
7: Draw knowledge-exchange likelihood ϕLr,r ′ ∼ Dir (αL )

8: for each content interaction d = (a,W , t ) ∈ Du do
9: Choose action-topic k ∼Multi (ϕKr )
10: for wordw ∈Wd do
11: Draww ∼Multi (ϕVk )

12: Draw action a ∼Multi (ϕAk )

13: Draw time-stamp t ∼ Beta(αr,k , βr,k )

14: for each inward exchange (s,u,ℓ) ∈ Lu do
15: Draw ℓ ∼ Multi (ϕLrs ,r )

16: for each outward exchange (u,y,ℓ) ∈ Lu do
17: Draw ℓ ∼ Multi (ϕLr,ry )

users, we model relationships between the pairs of profiles (r , r ′),
since every user is assigned to a single profile. This modeling choice
is guided by sparsity. If wemodel every pair of users, wewill develop
a poor understanding of pairwise user interactions, owing to the
heavy tailed activity distribution (i.e. most users contribute little;
c.f. Figure 1).

We associate a label ℓ ∈ L indicating the exchange type (e.g.
Question → Answer, Comment → Answer etc.) between an or-
dered pair of users (u,v ). To capture the knowledge exchange be-
tween profile pairs, we set-up |R |2 multinomial distributions over
exchange types ϕLr,r ′ between all ordered profile pairs (r , r ′).

Let Lu denote all exchanges for user u with other usersv . Notice
that sometimes u may initiate the exchange (e.g. ask a question)
or respond (e.g. answer). Then, the likelihood p (Lu | r ) depends
on the profiles being served to users involved in exchanges with u.
Thus:

p (Lu | r ) ∝
∏

(s,u, ℓ)∈Lu

ϕLrs ,r (ℓ)︸                 ︷︷                 ︸
inbound exchange

×
∏

(u,y, ℓ)∈Lu

ϕLr,ry (ℓ)︸                 ︷︷                 ︸
outbound exchange

, (7)

where ϕLrs ,r (ℓ) is the likelihood of an in-bound exchange from
source user s served profile rs , and ϕLr,ry (ℓ), for an out-bound ex-
change to user y served ry .

The overall conditional likelihood p (u | r ) is the product of likeli-
hood of exchanges p (Lu | r ) and likelihood of content interactions
p (d | r ) of each user:

P (u | r ) ∝ p (Lu | r ) ×
∏
d ∈Du

p (d | r ). (8)

Algorithm 1 summarizes the generative process corresponding
to Equation (8). We combinep (u | r ) from Equation (8) withp (x | u)
(Equation (2)) to seat users u on tables x , serving profile rx .
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Symbol Description

n
(w )
k ,n

(a)
k ,n

(.)
k Number of times word w , action a were as-

signed to topic k, and respective marginals
n
(k )
r ,n

(.)
r Number of times interactions of users served

profile r was assigned topic k and marginal
n
(ℓ)
r,r ′ ,n

(.)
r,r ′ Number of ℓ-labeled exchanges, all exchanges

between users in tables serving r with r ′

Table 3: Gibbs-sampler count variables

In this section, we identified challenges of using skew-aware
partitions [4] when we have sparse users. Our intuition was to
seat users based on their behavioral similarity, and to not learn
profiles at the level of an individual, but that of a group.We discount
common behaviors, encouraging identification of niche behavior.
We introduced action-topics, and each profile is a mixture over
these topics. Importantly, each profile learns a separate temporal
distribution for each topic. Finally, we showed how user seating is
guided by interaction between profiles—that is, users who behave
similarly in their interaction with other groups are more likely to
be seated together.

5 MODEL INFERENCE
In this section, we describe an efficient Gibbs-sampling approach for
model inference, analyze its computational complexity and propose
a parallel batch-sampling approach for speed-up. In each iteration
of Gibbs-sampling, we unseat users one at a time and re-sample
their seating as in Equation (2). Profile and Action-topic distri-
butions are simultaneously updated, while hyper-parameters are
modified between Gibbs iterations. We factor the seating sampler
(Equation (12)) for efficiency since the number of tables is not fixed.
We speed-up convergence times with coherent initial seating based
on similar action distributions and content tags.

Text 
Content

Inactive 
Users

Profile-Driven 
User Partitions

User 
Activity

Latent Activity 
Profile Learning

Subtle Variations

Niche User
Partition Discovery

Figure 2: Our Gibbs-sampler simultaneously samples the
seating arrangement of users (eq. 13) and learns profiles to
describe the seated users (eq. 9, 10, 11). Users are grouped by
behavioral similarity to overcome sparsity.

The likelihood of generating a user interaction d = (a,W , t ) ∈
Du conditional on action-topic k ∈ K is:

p (a,W | k ) ∝
n
(a)
k + αA

n
(.)
k + |A|αA

×
∏
w ∈W

n
(w )
k + αV

n
(.)
k + |V |αV

. (9)

Thus, the likelihood p (d | r ) of interaction d = (a,W , t ) for a user
served activity profile r ∈ R, Equation (6) is:

p (d | r ) ∝
∑
k ∈K

nkr + αK

n
(.)
r + |K |αK

× p (a,W , t | k, r ). (10)

The likelihood that knowledge exchange occurs between profile
pairs (r , r ′) on type ℓ is:

ϕLr,r ′ (ℓ) =
nℓr,r ′ + αL

n
(.)
r,r ′ + |L|αL

. (11)

Thus, the conditional likelihood in Equation (8) can be obtained
via Equation (10) over Du and Equation (11) over Lu respectively.
We can seat a user u either on an existing table x ∈ {1, . . . , χ }
serving profile rx or on a new table χ + 1; Equation (2), conditioned
on the seating of all other users, denoted by x−u . To avoid likelihood
computation over all tables, we perform the draw in two factored
steps. We first sample the profile served to u by marginalizing over
tables via Equation (4),

P (r | u,x−u ) ∼

(
Nr − χrδ

N + γ
+

γ + χδ

|R |(N + γ )

)
p (u | r ), (12)

and then sample from the set of tables serving the sampled profile
(including the possibility of a new table with this profile draw),

P (x | r ,u,x−u ) ∼



nx−δ
N+γ × 1(rx = r ), x ∈ {1, . . . , χ },
γ+χδ
N+γ ×

1
|R | , x = χ + 1

(13)

Note that N = |U | − 1, i.e. all users except u. If we draw a new
table χ + 1, we assign the sampled profile variable r . We update all
counts ( Section 5) corresponding to prior profile and action-topic
assignments for u.

We use well known techniques to update parameters. At the
end of each sampling iteration, we update Multinomial-Dirichlet
priors αV , αA , αK and αL by Fixed point iteration [12]. We up-
date Beta parameters (αr,k , βr,k ) by the method of moments [23].
We round all time-stamps to double-digit precision and we cache
probability values p (t | r ,k ) ∀ t ∈ [0, 1], r ∈ R,k ∈ K at the end of
each sampling iteration, thus avoiding R × K scaling for p (u | r )
in Equation (12). While we fix the Pitman-Yor parameters in our
experiments for simplicity, if needed, we can estimate them via
auxiliary variable sampling [19, 20].

Computational Complexity. Our inference is linear in the num-
ber of users |U | and interactions |D| , scaled by R+K (see empirical
results in Figure 6). To see this, notice that in each Gibbs iteration,
computing Equations (9) and (10) involves |D| × (K + R) computa-
tions. Equation (12) requires an additional |U | × R computations.
We prevent R × K scaling for p (u | r ) in Equation (12) by caching.
We cache the first product term of Equation (12) for each r ∈ R, and
update it only when there is a change in the seating arrangements
on tables serving profile r .
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ParallelizationwithBatch Sampling. We scale tomassive datasets
by parallelizing inference via batch-sampling. The Gibbs sampler
described above samples each user’s seating P (xu | u,x−u ) in Equa-
tion (13), conditioned on all other users. This necessitates iteration
over U . Instead, seating arrangements could be simultaneously
sampled in batches U ⊂ U conditioned on all users outside the
batch, i.e. P (xU | U ,xU−U ) where xU denotes the table assign-
ments to users in batch U . For efficiency, batches must be chosen
with comparable computation. We approximate computation for
u ∈ U ∝ |Du | + |Lu | to decide apriori batch splits for sampling
iterations. Note that when batch sampling, we can only exploit
knowledge exchange links between users in the batch and users
not in the batch. In practice, since |U | ≪ |U |, the impact of not
using knowledge exchanges between users in the same batch turns
out to be negligible.

6 DATASET DESCRIPTION
We now provide a brief description of the Coursera MOOC and
Stack-Exchange datasets that we use in our experiments and char-
acterize them in terms of skew and sparsity.

Stack-Exchanges are community Q&A websites where partici-
pants discuss a wide range of topics. Users interact with each other
and perform a range of actions (e.g. post question, answer, comment
etc.). We experiment on 10 Stack-Exchanges, chosen for thematic
diversity and size variation. Coursera MOOCs feature video lectures
for students to watch and a forum where students and instructors
can interact. We analyze the actions (e.g. play, skip, rewind etc.)
on the videos, lecture content via subtitles, and the forum inter-
action for four MOOCs, chosen for thematic diversity. The user
action types and datasets are summarized in Table 4 and Table 5
respectively.

To get a feel for these datasets, let us examine sparsity and
behavior skew. To understand sparsity, we compute the power-law
(fw = c .wηt ) exponent ηt that best describes the fraction of users
fw who were active forw-weeks. A more negative index indicates
that fewer users are consistently active. As a reference point, when
ηt = 0, a constant fraction of users are always active. Thus when we
notice that ηt = −2.81 for Ask Ubuntu Stack Exchange in Table 5,
it means that the number of users who are active for two weeks is
just 14% of those active for one week. Table 5 indicates that larger
Stack Exchanges tend to have greater sparsity.

Platform Action Description

Coursera
MOOC

Play First lecture segment view
Rewatch Repeat lecture segment view
Clear Concept Back and forth movement, pauses
Skip Unwatched lecture segment
Create Thread Create forum thread for inquiries
Post Reply to existing threads
Comment Comment on existing posts

Stack-
Exchange

Question Posting a question
Answer Authoring answer to a question
Comment Comment on a question/answer
Edit Modify posted content
Follow Following posted content

Table 4: User Action Description (Coursera/Stack-Exchange)

Table 5: Preliminary analysis indicates significant behav-
ior skew and inactive user proportion, although slightly re-
duced in specialized domains like Christianity

Platform Dataset Users Interactions ηt SN

Coursera
MOOC

Comp Sci-1 26,542 834,439 -2.51 0.67
Math 10,796 162,810 -2.90 0.69
Nature 6,940 197,367 -2.43 0.70
Comp Sci-2 10,796 165,830 -2.14 0.73

Stack-
Exchange

Ask-Ubuntu 220,365 2,075,611 -2.81 0.65
Android 28,749 182,284 -2.32 0.56
Travel 20,961 277,823 -2.01 0.66
Movies 14,965 150,195 -2.17 0.67
Chemistry 13,052 175,519 -2.05 0.63
Biology 10,031 138,850 -2.03 0.71
Workplace 19,820 275,162 -2.05 0.59
Christianity 6,417 130,822 -1.71 0.64
Comp Sci 16,954 183,260 -2.26 0.62
Money 16,688 179,581 -1.72 0.63

We measure skew by first identifying the dominant action type
or style of each user (e.g commenter, editor) and then compute
the normalized entropy SN of the resulting user distribution. In
a large Stack-Exchange such as Ask-Ubuntu, while less than 5%
(c.f Figure 1) of the users have ‘Answer’ as their dominant type,
over 60% of the users have ‘Comment’ as their dominant action.
This does not consider content topics, which result in even greater
skew. When SN = 1, all dominant action types are equally likely; in
contrast SN = 0 indicates a single dominant action type. In MOOCs,
’Play’ is the dominant action type with low forum participation
(participation rates ∼10-15% in our MOOC forums).

7 EXPERIMENTAL RESULTS
In this section, we present extensive quantitative and qualitative
analysis of our model. We begin by introducing baseline meth-
ods ( Section 7.1), followed by prediction tasks undertaken ( Sec-
tion 7.2), and present impressive quantitative results for CMAP
in Section 7.3. Then in Section 7.4, we qualitatively analyze the
reasons for CMAP’s gains over baselines. In Section 7.5 we examine
a counterfactual: what if the data had less skew? Finally, we ana-
lyze scalability (Section 7.6), parameter sensitivity (Section 7.7) and
discuss limitations in Section 7.8.

7.1 Baseline Methods
We compare our model (CMAP) with user representations from
three state-of-the-art models and two standard baselines. We list
the baselines below.

LadFG [15]: LadFG is a deep recurrent approach to learn be-
havior representations from temporal activity and demographic
information of users. We provide LadFG action-content data from
interactions and all available user demographic information.

BLDA [16]: BLDA is an LDA-based extension to capture latent
associations of user actions and content. It represents users as a
mixture over these content-action topics.

FEMA [8]: FEMA is a multifaceted sparsity-aware tensor factor-
ization approach employing external regularizers for smoothing.
Facets in our datasets are users, words and actions. We set User
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and Word regularizers to their exchanges and co-occurrence counts
respectively. We could not run FEMA on Ask-Ubuntu and Comp
Sci-1 datasets due to very high memory and compute requirements
(Regularizer matrices in FEMA scale quadratically O ( |U |2)).

DMM (Only text) [27]: We apply DMM to the textual content
of all interactions to learn topics. We represent users by the pro-
portions of topics in their interaction content.

Logistic Regression Classifier (LRC) [10]: Logistic regression
based classification model. Input features are DMM topics that the
user interacts with and actions in each topic (Answer, Edit etc.).

We construct user representations for models as follows:
For CMAP (Ours), we use the |R |-dimensional normalized condi-
tionals P (r | u) for each user as given by Equation (4); For BLDA,
we use normalized conditionals over the set of behaviors for each
user as computed by the authors [16]; for FEMA, we use respective
rows of user projection matrix, At [8]; for LadFG, we use latent
user embeddings learned upon training; for DMM, we use topic
proportions for user generated text. We use LRC only for prediction
tasks, as it does not build user representations.

For fair comparison, the user representations from baselines
were the same dimensionality as the profile count |R | for our model.
We use |R | = 20 and 40 Action-Topics (|K |) for all datasets. We ini-
tialize Dirichlet priors as: ϕVk ,ϕ

A
k ,ϕ

K
r and ϕLr,r ′ with the common

strategy [6, 9, 26] (αX = 50/|X |,X = {A,L,K }, and αV = 0.01)
and Beta parameters αrk , βrk to 1. CRP parameter initialization
δ = 0.5,γ = 1 performed well consistently. Our experiments were
performed on a single x64 XSEDE compute node3 [21] (Intel Xeon
E5-2680v3, 64 GB Memory). Our implementations are available
online4.
7.2 Prediction Tasks
We identify three distinct task types for evaluating the quality of
user representations across methods. We focus on two User Char-
acterization tasks, a Future Activity Prediction task, and Question
Recommendation in Stack-Exchanges. Below, we list the tasks.

User Characterization (MOOC) - Certificate Earner: Cours-
era awards certifications to students maintaining high cumulative
grades over assignments. We predict students obtaining certificates
with the user representations obtained from each model.

User Characterization (Stack-Exchange) - Reputed User:
For Stack-Exchanges, we predict if participants have a high reputa-
tion with user representations from each model. We define users
in a Stack Exchange to have high reputation if they lie in the top
quartile (25%) of all reputation scores.

Question Recommendation (Stack-Exchange): For popular
questions in Stack-Exchanges, we identify suitable users to answer
them. In each dataset, we choose a set of 100 held-out popular
questions & learn user representations by applying models to their
remaining activity. We then perform 5-fold Cross-Validation for
each held-out question with the known users who answered the
question and equal number of negative users chosen at random.

Future Activity Prediction (All Datasets): We obtain topic
assignments for user interactions with DMM [27] (T = 20). For
each user, we predict their future activity mixture over topics &
actions given user representations with their past activity from
3https://www.xsede.org/
4https://github.com/ash-shar/CMAP

Table 6: Reputed User Prediction (µ ± σ across Stack-
Exchanges). We obtain improvements of 6.65-21.43% AUC.

Method Precision Recall F1-score AUC

LRC 0.73 ± 0.04 0.69 ± 0.04 0.72 ± 0.03 0.73 ± 0.03
DMM 0.69 ± 0.05 0.65 ± 0.04 0.66 ± 0.04 0.70 ± 0.04
LadFG 0.86 ± 0.03 0.75 ± 0.03 0.79 ± 0.02 0.80 ± 0.03
FEMA 0.79 ± 0.04 0.73 ± 0.03 0.77± 0.03 0.79 ± 0.04
BLDA 0.75 ± 0.04 0.71 ± 0.04 0.74 ± 0.03 0.74 ± 0.04
CMAP 0.85 ± 0.02 0.83 ± 0.03 0.84 ± 0.02 0.86 ± 0.02

each model (6-month data held-out). LRC is not used in Future
Activity Prediction as it does not build a user representation.

We use standard classifiers and evaluation metrics. Characteri-
zation and Recommendation use linear-kernel SVM evaluated with
Precision, Recall, F1-Score and Area-Under-Curve (AUC). Future
Activity Prediction uses Linear Regression. Both were implemented
with default parameters in sklearn 5. For the activity prediction
task, we measure the Root Mean Squared Error (RMSE) in predicted
activity proportions for (topic, action) pairs against actual propor-
tions of users in the held-out future activity. We compute results
with 5-fold cross-validation for each dataset. Statistically significant
gains (Paired t-test, p < 0.05) are in bold.
7.3 Results
We examine the experimental results for each of the three tasks—
User characterization, question recommendation and future activity
prediction in this section.

Our method improves on the baselines in the reputation predic-
tion task by 6.26-15.97% AUC averaged across the Stack-Exchanges;
Table 6 shows the results with statistically significant improvements
in bold. LadFG performs slightly better on the overall precision
in reputation prediction (not statistically significant), likely due
to over-fitting of the embeddings to user-level data resulting in
low recall. Our ability to discover more distinct user clusters even
with the same latent dimensions as baselines (refer fig. 5) is the
main reason for our gains in predicting reputation. Similarly, we
improve on certification prediction (see Table 7) by 6.65-21.43% AUC
averaged over MOOCs.

For the question recommendation task Table 8, we see gains be-
tween 6-47% AUC over the baselines. To do well in this task, we
require the model to make finer distinctions between the topical
preferences of users; user reputation and action style are also im-
portant in this task.

For the future activity prediction task, our method shows gains
over baselines in RMSE by 12%-25% on MOOCs and between 9.5%-
22% on Stack-Exchanges; (see Table 9). Gains are explained by our
5http://scikit-learn.org/

Method Precision Recall F1-score AUC

LRC 0.76 ± 0.04 0.71 ± 0.05 0.74 ± 0.04 0.72 ± 0.03
DMM 0.77 ± 0.03 0.74 ± 0.04 0.75 ± 0.03 0.74 ± 0.03
LadFG 0.81 ± 0.02 0.78 ± 0.02 0.79 ± 0.02 0.79 ± 0.02
FEMA 0.78 ± 0.03 0.75 ± 0.04 0.76 ± 0.03 0.78 ± 0.03
BLDA 0.80 ± 0.04 0.75 ± 0.03 0.77 ± 0.03 0.77 ± 0.04
CMAP 0.86 ± 0.02 0.81 ± 0.03 0.83 ± 0.02 0.84 ± 0.02

Table 7: Certificate Earner Prediction (µ ± σ across MOOCs);
CMAP improves upon baselines by 6.65-21.43% AUC
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Table 8: Question Recommendation (µ ± σ across Stack-
Exchanges)with 6.30-47.45%AUCgains forCMAP.DMMper-
forms quitewell owing to importance of content in this task.

Method Precision Recall F1-score AUC

LRC 0.65 ± 0.06 0.57 ± 0.08 0.60 ± 0.06 0.57 ± 0.05
DMM 0.72 ± 0.04 0.81 ± 0.05 0.75 ± 0.04 0.74 ± 0.04
LadFG 0.88 ± 0.03 0.60 ± 0.02 0.71 ± 0.02 0.76 ± 0.04
FEMA 0.79 ± 0.05 0.73 ± 0.06 0.77± 0.05 0.79 ± 0.03
BLDA 0.70 ± 0.04 0.84 ± 0.04 0.77 ± 0.03 0.75 ± 0.04
CMAP 0.89 ± 0.03 0.81 ± 0.02 0.85 ± 0.03 0.84 ± 0.02

model’s ability to make finer distinction on action styles, and to be
able to make better distinctions between profiles assigned to users.

In this section, we showed impressive performance gains on
three types of tasks for our model over state of the art baselines.
In the next section, we qualitatively analyze the reasons for it’s
success.

7.4 Why does CMAP work well?
To interpret the gains obtained by CMAP, we examine the extracted
clusters in Section 7.4.1 and then look at users responsible for the
performance gains of our model in Section 7.4.2.

7.4.1 The Impact of Profile Driven Seating. We now compare
clusters obtained through CMAP seating against conventional gen-
erative assignments in BLDA [16] on Stack-Exchanges. Both models
group users best described by the same profile to form clusters. We
use average user reputations of the clusters (appropriately nor-
malized) as an external validation metric for cluster quality. We
also run our model excluding time and knowledge-exchanges to
see the effect on the clusters. Figure 3 shows the result from the
Ask-Ubuntu Stack Exchange, and Table 10 shows themain activities
and topics of the top three CMAP clusters. We make the following
key observations from the clusters:

The Mean-Shift problem: TheDirichlet-Multinomial setting
in BLDA tends to merge profiles and hence shift cluster sizes
and average participant reputation closer to the mean. Fig-
ure 3 shows that 15 of 20 BLDA clusters have nearly the
same size and average reputation. Both variants of CMAP
show diversity in cluster size and high reputation variability
across tables. Our cluster assignments appear to mirror the
behavior skew for Ask-Ubuntu (c.f. Figure 1).

Profile Quality: CMAP learns finer variation in the topic affini-
ties and actions of expert users. We can observe these varia-
tions from Figure 3 and from Table 10. The top three profiles
are of higher reputation, smaller in size, and from Table 10,
each of these clusters shows distinct activities different from
the mean activity. CMAP clusters appear to better reflect

Method DMM LadFG FEMA BLDA CMAP

MOOC 4.9 ± 0.4 4.2 ±0.3 4.1 ± 0.2 4.4 ± 0.4 3.6 ± 0.2
Stack-Ex 8.6 ± 0.6 7.9 ± 0.4 7.5 ± 0.3 7.4 ± 0.5 6.7 ± 0.4

Table 9: Future Activity Prediction (RMSE (×10−2) µ ± σ ),
Lower RMSE is better. CMAP ouperforms baselines in
MOOCs (12%-25%) and Stack-Exchanges (9.5%-22%)

skewed user activity (c.f. Table 5) and content preference
(c.f. Figure 1) with flexible profile-driven seating.

We observe a similar trend in the aggregated clusters obtained
from all the other Stack-Exchange datasets (c.f. Figure 5). The
Dirichlet-Multinomial setting in BLDA results in similarly sized
clusters which cannot model highly skewed content and action
affinities of users. Note the fewer high-reputation clusters of BLDA
in comparison to the finer distinctions of reputed users in our model.
Our performance in prediction and recommendation reflect these
observations, we see significant gains in our ability to characterize
reputed users and recommend suitable content (Section 7.2).

7.4.2 Making gains on inactive users. We now investigate the
source of our gains. We split users in each Stack-Exchange and
MOOC into four quartiles based on interaction count (Quartile 1 is
least active, 4 most). Then, we evaluate each method on Reputation
and Certificate Prediction AUC in each quartile of Stack Exchange
and MOOC datasets respectively.

Our model shows large gains (Figure 4) in Quartiles 1,2 that
contain sparse users.We attribute these gains due to our joint profile
learning to describe similar users seated on tables. The decision
to address skew and sparsity jointly has two advantages: better
profile fits for sparse users; more distinct and informative profiles
in skewed scenarios. In contrast, models building representations at
the user level perform weakly in Quartiles-1,2 since these methods
rely on interaction volume. We make smaller gains in Quartiles 3,4.
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Figure 3: Bubbles denote user clusters discovered by each
model in the Ask-Ubuntu dataset (Bubble size ∝ Users in
Cluster). CMAP discovers fine distinctions of reputed users
(Profiles 1,2,3,4) by content preference and activity (Ta-
ble 10). BLDA clusters are mean-sized and close to the pop-
ulation average in reputation. In contrast, our assignments
better reflect the behavior skew of users in the dataset.

Cluster Action Style Common Topics

1 +31% Answer, +24% Edits,
-9% Questions

Graphics Drivers, Booting
Issues, Disk Partitions

2 +67%Answer, -3% Edits,
-21% Questions

Gnome, Desktop, Package
Install

3 +11% Answer, -4% Edits,
+47% Questions

Script, Application, Sudo
Access

Table 10: Action and Content description of users in top-3
clusters discovered by CMAP in Ask-Ubuntu, +/- values of
action proportions against the average Ask-Ubuntu user
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Figure 4: Effects of activity sparsity on prediction tasks (AUC) for Stack Exchanges (datasets 1-10) and MOOCs (datasets 11-14).
CMAP has greatest performance gains in Quartile-1 (Sparse users), performance gap reduces for very active users (Quartile-4).
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Figure 5: Bubbles denote clusters in other Stack-Exchanges
(Bubble size ∝ Users in Cluster). CMAP discovers highest
reputation clusters in all datasets (Thick red dot, Top-left).
BLDA clusters tend to mean reputation, size (Mean-Shift)
not capturing disparities. In our case, profiles 1,2,3,4 appear
to capture niche, highly reputed user behaviors

To summarize: jointly addressing sparsity and skew by profile
driven seating is responsible for our gains. Importantly, the clus-
ters are coherent, the model learns fine distinctions in behavioral
profiles and exhibits behavior skew found in the underlying data.

7.5 What if there was less Skew?
In this section, we study a counterfactual: what if the real-world
datasets were less skewed? To study this question, we sub-sample
users who predominantly perform the two most common actions in
our largest datasets, Ask-Ubuntu (Comments and Questions) and
Comp Sci-1 MOOC (Play and Skip). These users are sub-sampled by
half while retaining all other users, hence reducing overall action
skew in the data. Baseline models are expected to perform better
with reduced skew. All models degrade in Ask-Ubuntu owing to
significant loss of content.

Table 11 shows that CMAP still maintains a lead owing to inactive
users.We also investigate performance gains in a highly skewed and
sparse Stack-Exchange (Ask-Ubuntu) vs least skewed (Christianity)

Method Ask-Ubuntu CompSci1 MOOC

Original Deskewed Original Deskewed

LRC 0.671 0.656 0.713 0.734
DMM 0.647 0.611 0.684 0.672
LadFG 0.734 0.718 0.806 0.830
BLDA 0.706 0.683 0.739 0.788
CMAP 0.823 0.746 0.851 0.849

Table 11: CMAP outperforms baselines (AUC) in the de-
skewed datasets, but with smaller gains

Method DMM LRC LadFG FEMA CMAP BLDA

Ask-Ubuntu 0.647 0.671 0.734 - 0.823 0.706
Christianity 0.684 0.720 0.842 0.818 0.856 0.791

Table 12: We see greater gains for User Characterization in a
high-skew dataset (Ask-Ubuntu) vs low-skew (Christianity)

in Table 12. On average, we outperform baselines by 13.3% AUC
for Ask-Ubuntu vs 10.1% for Christianity Stack-Exchange in User
Characterization.

7.6 Scalability Analysis
We compared the runtimes and memory consumption of our serial
and batch-sampling (with 8 cores) inference algorithms with other
models, for different volumes of interaction data obtained from
random samples of the Ask-Ubuntu Stack-Exchange. BLDA is the
fastest among the set of compared models. Our 8x batch sampler is
comparable to BLDA in runtime. FEMAwas the least scalable owing
to theO ( |U |2) growth of the User-User regularizer matrix. Figure 6
shows the comparisons between the algorithms.
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Figure 6: Effects of dataset size on algorithm runtime and
memory consumption. BLDA is the fastest among the set of
compared models.

7.7 Parameter Sensitivity Analysis
Ourmodel is primarily impacted by three parameter values: number
of profiles R, number of Action-Topics K and discount δ . We find
results to be stable in a broad range of parameter values indicating
that in practice our model requires minimal tuning (Figure 7). It is
worth noting that while R primarily impacts the granularity of the
discovered activity profiles, K impacts the resolution of content-
action associations. Dirichlet and other hyper-parameters have
negligible impact on the profiles and seating arrangement learned.
Our inference algorithm converges within 1% AUC in less than 400
sampling iterations across all datasets.
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Figure 7: Mean performance(AUC) & 95% confidence inter-
val with varying model parameters one at a time: δ , R, K .
Stability is observed in broad ranges of parameter values.

7.8 Limitations
We identify two limitations. First, we make no assumptions about
the structure of knowledge (e.g. a knowledge of “probability” is
useful to understand “statistical models”); incorporating knowledge
structure, perhaps in the form of an appropriate prior will help
with better understanding participants with low activity. Second,
we assume a bounded time range. Development of latent profiles
for streaming activity can lead to deployment with real-time data.

It would be an interesting exercise to observe the effect of dy-
namic updates to Pitman-Yor hyper-parameters over sampling it-
erations [20]. Although such an approach has been explored for
LDA [22], it is unclear how over-fitting in our approach can be
avoided in case of hyper-parameter drift. We plan this study for
future work.
8 CONCLUSION
This paper proposes an approach to learn descriptive statistical
representations of user behavior on interactive platforms, robust
to behavior skew and sparsity. Our framework is the first to jointly
address skew and sparsity across graphical behavioral models. Our
main technical contribution: jointly partition users using a Pitman-
Yor process prior and assign temporal behavioral profiles to each
partition. User profile models can be flexibly chosen depending
on requirements. Extensive experiments over large online forums
reveal the informativeness of our behavior profiles in diverse rec-
ommendation and profiling tasks. A qualitative analysis indicates
our ability to discover niche and discriminative user groups and
strong gains for sparse participants. Furthermore, our algorithms
scale linearly and do not require supervision or auxiliary data.

We identify three rewarding future directions to enhance appli-
cations of our model. Developing Incremental models for streaming
data could enable application to real-time online platforms. Incor-
porating knowledge priors on expected behavior patterns (e.g. how
students without a strong probability might test in an IR class) in
the context of the MOOC platform [2] is also a possible future direc-
tion. Finally, we plan to incorporate continuous user action spaces,
which is particularly challenging in skewed and sparse settings.
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